OFFICE OF VACCINES RESEARCH AND REVIEW

Center for Biologics Evaluation and Research

Jerry P. Weir, Ph.D. Division of Viral Products

Laboratory Mission and Function

- Ensure the safety and efficacy of vaccines and related biological products for human use
 - Bacterial vaccines
 - Viral vaccines
 - Parasitic vaccines
 - Allergenic products
- Facilitate the development, evaluation, licensure and use of new vaccines and related products that positively impact the public health

Laboratories in the Office of Vaccines Research and Review

- Immediate Office of the Director
 - Standards and Testing Section
 - Analytical Chemistry Staff
- Division of Viral Products
 - Laboratories of DNA Viruses, Retrovirus Research, Hepatitis Viruses, Vector-Borne Viral Diseases, Immunoregulation, Method Development, Respiratory Diseases
- Division of Bacterial, Parasitic and Allergenic Products
 - Laboratories of Immunobiochemistry, Biophysics, Enteric & Sexually Transmitted Diseases, Bacterial Polysaccharides, Methods Development & Quality Control, Mycobacterial Diseases & Cellular Immunology, Bacterial Toxins, Respiratory & Special Pathogens

Facilitating the Development and Evaluation of New Vaccines

- Anticipating and Addressing the Regulatory Issues for New Products
 - General regulatory issues applicable to many products or product classes
 - Cell substrate issues
 - Improved test methods (sensitivity, reliability, etc.)
 - Product specific issues
 - Correlates of protection necessary for efficacy evaluation
 - Improved assays (e.g., potency, efficacy)
 - Animal models for efficacy evaluation
- Prioritizing Research Efforts
 - Availability of necessary expertise
 - Appropriateness of research effort
 - Competing demands

Development of Alternative Lot Release Tests for Vaccines

- Increased product availability
 - Emergency situations
 - Standardize requirements for new products
- Aid development of combination products
- Reduce animal testing
 - Test uncertainties
 - Costs, difficulties
- Recent vaccine examples
 - Rabies potency
 - Mumps neurovirulemce,
 - Anthrax potency
 - Diphtheria toxoid potency

New Improved Rabies Potency Test

- Current potency test
 - Animal protection assay
 - ~600 mice per test
 - ~6 weeks per assay
 - High degree of variability (25-400%)
- Alternative assay
 - Capture ELISA
 - R-17 recognizes neutralizing epitope and is conformation dependent

Polyclonal rabbi anti-rabies IgG

Development of Rapid Microbial Tests

- New microbial tests would foster improvements in current products and facilitate development and evaluation of new vaccine products
- Current tests for are culture based, lengthy, and require large volumes
 - Bacteria, Fungi, Molds (> 14 days)
 - Direct inoculation (FTM & SCDM or TSB)
 - Membrane filtration
 - Mycoplasma (> 21 days)
 - Agar and broth culture based
 - Complex media
 - Limited shelf life

Microarray-Based Assay for Detection of *Mycoplasma*, *Spiroplasma*, and *Ureaplasma* Species

Use of Novel Cell Substrates for Vaccine Production

- The use of novel cell substrates (poorly characterized, transformed, neoplastic cells, etc.) for vaccine production presents several regulatory concerns including:
 - Potential presence of adventitious agents that can be present in vaccines
 - New molecular methods under development to detect broad categories of potential adventitious agents
 - Theoretical oncogenic risk
 - Development of new assays to define the oncogenic potential of residual DNA from tumorigenic or tumorderived cells
 - Evaluation of in vivo methods to detect known oncogenic viruses

New Smallpox Vaccines

- Development and Licensure of New Smallpox Vaccines Became a High Priority for Public Health Agencies in 2001
 - Issues regarding the safety of such vaccines include adverse events associated with traditional vaccines (e.g., neurovirulence, myocarditis, progressive vaccinia, eczema, etc.)
 - Issues regarding efficacy evaluation of new products include:
 - Evaluation of efficacy in the absence of disease
 - Determination and evaluation of relevant animal models for efficacy
 - Role and contribution of individual vaccine antigens
 - Appropriate measures of immunogenicity and protection for new vaccines (e.g. correlates of protection)
 - Improved assays for measurement in clinical trials and in animal models

Improved Assays for Evaluation of New Smallpox Vaccines

- Identification of Research Issues
 - One of the rate limiting steps in new vaccine development was the need for a high throughput, precise and reproducible method for measuring the neutralizing antibody response in vaccines
 - Initiation of smallpox vaccination would require increased production and use of Vaccinia-IgG (VIG), the only therapy available for treatment of vaccine adverse events. New methods were needed for measuring the strength and shelf-life of VIG preparations

HIGH THROUGHPUT VACCINIA NEUTRALIZATION ASSAY BASED A REPORTER GENE READOUT

β-**Gal** Standards Virus Titration 0.12 0.06 0.03

Virus-Neutralization Anti-vaccinia IgG (VIG)

Other Examples of Critical Path Efforts for Priority Viral Vaccines

Hepatitis C

Development of transgenic mouse models to study pathogenesis and evaluate candidate vaccines

HIV

- Development of new serodetection EIA for differential diagnosis of HIV infections in the presence of vaccinegenerated antibodies
- Identification of target structures and epitopes for neutralizing antibodies

West Nile Virus

Development of standardized immunological assays for vaccine induced immunity

Poliovirus Vaccines

 Development of animal models to evaluate efficacy of Sabinderived IPV

Influenza Vaccines

 Development and standardization of reference strains and reagents for evaluation of pandemic influenza vaccines for pandemic influenza

Neisseria Meningitidis Goals of the Meningitis Vaccine Project

- Goal of eliminating epidemic meningitis as a public health problem in sub-Saharan Africa (1997 ~ 200,000 cases, 15% CFR)
 - Be immunogenic in young children
 - Induce long term protection
 - Induce herd immunity

Neisseria Meningitidis Critical Path of the Meningitis VP

Other Examples of Critical Path Efforts for Priority Bacterial Vaccines

Anthrax

- Development of animal models of pathogenesis
- Development of serological assays
- Development of Ty21a vector for PA
- Establish tools for genetic manipulation of the pathogen

Tuberculosis

- Discovery of novel antigens with protective properties
- Evaluation of DNA vaccines

Shigella

Creation of Ty21 vector of shigella LPS

Pneumococcus

Identification of serological correlates of protection

Meningitis

- Development of high-efficiency conjugation technology
- Establishment of correlates of protection

Summary and Future Directions

- Numerous scientific, technical, and regulatory challenges must be addressed in the development of new and improved vaccines
 - General regulatory issues
 - Product specific issues
 - Challenge of vaccine development for emerging diseases
- OVRR researcher/reviewers have a major role in identifying and anticipating such issues
 - Clear guidance regarding expectations for product development and licensure
 - Guidance documents (e.g., revised cell substrate and DNA vaccines guidance)
 - CBER research activities necessary to address certain issues with regulatory implications
 - Product development
 - Product evaluation

A Comment on Moving Forward

Nothing would be done at all if one waited until one could do it so well that no one could find fault with it.

- John Henry Cardinal Newman